Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s
نویسنده
چکیده
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.
منابع مشابه
Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s - Electronics Letters
Introduction: An add-drop multiplexer (ADM) is one of the key elements in optical time division multiplexed (OTDM) networks. Various methods of performing OTDM add-drop have been demonstrated. Recently add-drop operation at 16 10 Gbit=s has been demonstrated with the use of a gain transparent ultrafast nonlinear interferometer (GT-UNI) [1] switch and at 4 40 Gbit=s with travelling-wave electroa...
متن کاملOTDM add - drop networking using 275 km installed fibres
Introduction: 160 Gbit=s optical time domain multiplexing (OTDM) technology is only interesting if full add-drop functionality can be realised on the existing fibre infrastructure [1]. A 160 Gbit=s OTDM add-drop node based on the gain transparent ultrafast nonlinear interferometer (GT-UNI) has been demonstrated under laboratory conditions [2]. In this Letter we present a 160 Gbit=s OTDM network...
متن کاملSimultaneous high speed OTDM add-drop multiplexing using GT-UNI switch
Introduction: The key functionality required in OTDM network nodes is add-drop multiplexing [1]. In an add-drop node a low bit rate single data channel will be separated (drop function) from an incoming high bit rate data stream. Simultaneously the remaining data channels should be left undisturbed (through function), and in the remaining vacant time slot a new channel can be added (add functio...
متن کاملAll-Optical TDM Data Demultiplexing at 80 Gb/s With Significant Timing Jitter Tolerance Using a Fiber Bragg Grating Based Rectangular Pulse Switching Technology
We demonstrate the use of fiber Bragg grating based pulse-shaping technology to provide timing jitter tolerant data demultiplexing in an 80 Gb/s all-optical time division multiplexing (OTDM) system. Error-free demultiplexing operation is achieved with 6 ps timing jitter tolerance using superstructured fiber Bragg grating based 1.7 ps soliton to 10 ps rectangular pulse conversion at the switchin...
متن کاملForward error correction supported 150 Gbit/s error-free wavelength conversion based on cross phase modulation in silicon.
We build a forward error correction (FEC) module and implement it in an optical signal processing experiment. The experiment consists of two cascaded nonlinear optical signal processes, 160 Gbit/s all optical wavelength conversion based on the cross phase modulation (XPM) in a silicon nanowire and subsequent 160 Gbit/s-to-10 Gbit/s demultiplexing in a highly nonlinear fiber (HNLF). The XPM base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017